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ABSTRACT

Data generated from selected model expressions for solid-state kinetics have
been analysed in terms of expressions of closely-related form to test distinguishability
of the models on which the expressions are based. Random errors have then been
introduced into these data and the data have been re-analyzed in terms of the original
and closely-related expressions. As is to be expected, introduction of errors decreases
distinguishability further and estimates have been made of the accuracy of measure-
ment of the extent of reaction, &, required, the most suitable ranges of « to use, from
plots of residuals, and the acceptable levels of various statistical parameters, for
reliable distinction between alternative models.

INTRODUCTION

Most studies of the kinetics and mechanisms of thermal decomposition of solids
incorporate consideration of the geometry of advance of the reactant-product -
interface. This usually requires a quantitative, detailed and critical comparison of
fractional reaction («)-time measurements, for the isothermal rate process of interest,
with theoretical kinetic expressions derived from various assumed models for product
phase nucleation and growth. Derivations of the most commonly used expressions,
summarized in Table 1, are given in reviews by Jacobs and Tompkins!, Young?,
Hulbert? and Delmon*. Geometric deductions based on kinetic measurements are
frequently confirmed and extended by microscopic observations of partially de-
composed reactant.

After determining which of the available rate expressions provides the most
acceptable fit to the experimental data, the temperature variation of the appropriate
rate coefficient, &, is used to calculaﬂ: an activation energy, E, a parameter which has
frequently been identified (by analogy with the accepted interpretation for homo-
gencous reactions) with the energy barrier to reaction. Attempts have often been made
to associate the value of E with a specific chemical transformation at the reaction
_ interface.
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TABLE 1

BROAD CLASSIFICATION OF SOLID-STATE RATE EXPRESSIONS, f{a) = Kkt

o)
1. Acceleratory a-time curves
Pl power law T olfn
El exponential law . ina
Z. Sigmoid o—time curves
A2 Avrami-Erofeev [ In(1 — x)uz
A3 Avrami-Ercofeev [ In(1 — &3
A4 Avrami-Erofeey ) [—1In (1 — OpP/%
Bl Prout-Tompkins In [a/(1 — a)]
3. Deceleratory o~time curves
3.1 Based on geometrical models
R2 contracting area 1 — (1 — exjli2
.R3 contracting volume 1 — {1 — i3
3.2 Based on diffusion mechanisms
D1 one-dimensional diffusion o2
D2 two-dimensional diffusion (A—a)in(l — &) + &
D3 three-dimensional diffusion f1 —{d — )3
D4 Ginstling-Brounshtein . a—2«/3) — (0 — 23
3.3 Based on “order of reaction™ - )
F1 first order . —In{(1 — @)
F2 second order /{1l — =)
F3 third order /a — =P

Therrate coefﬁcients, k, although all with dimensions[time]-?, are of course different ine
The times, ¢, are assumed to have been corrected for any induction period, ro.

It is the intention of the present communication to focus attention «
the comparison of experimental data with the more commonly used rate
so that the reliability of geometric and other mechanistic deductions, whi
an integral part of most kinetic analyses, can be assessed realistically
always desirable that interpretation of rate data should be supported by
and other relevant observations, it is none the less appropriate to consic
tively the factorscontrolling the limits within which it is possible to distingui
of observations to alternative kinetic expressions. Somewhat surprt
problem has not been discussed in the literature and the present critic:
intended to identify some of the considerations which can increase the
analysis of rate data. '

Rate expressions

The kinetic expressions which have found the most widespread ap
in studies of the isothermal decompositions of solids are summarized
labelled according to the system given by Sharp et al.® Tables of numeric
_several of these equations have been published*~7. The expressions in
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grouped according to the shape of the x-time curves as acceleratory, sigmoid or
deceleratory. The deceleratory group is further subdivided according to the controlling
factor assumed in the derivation, as geometric, diffusion or reaction order. Ng® has
shown that the expressions of Table 1, as well as several others less frequently en-
countered, can be represented by the general relation

de/dt = kal™P(1 — x)' ™7

with 0 < p < 1 and 0 < g < 1. Sestak and Berggren® have proposed an alternative
general equation

dq/dt = ka"(l — a)™"(— In(1 — )"

The concept of reaction order (expressions F1, F2 and F3 of Table 1) must be
applied with care to rate processes involving solids. Acceptable solid-state inter-
pretations of obedience to equation F1 have been given!, though the use of this
relation to obtain Kinetic information from non-isothermal measurements has not
always been satisfactorily confirmed or justified. Some decompositions proceeding in
vitreous reactant phases have been shown'!?: *! to obey equations F2 or F3.

Methods of testing kinetic obedience

Probably the most widely used approaches to the identification of the rate
equation which provides the most satisfactory fit to the experimental measurements
(in the form of a series of («;, #;) values for the isothermal rate process) are the
following ((i) and (ii) have been used most frequently). (i) The linearity of plots!? of
calculated values of f(x;) against time for each kinetic expression, f(a) = kt. The
coincidence of experimental points with curves calculated from the theoretical
equation for: (ii) a-reduced time®, (ii) (da/d#)-time*, (iv) (da/dt)-reduced time'3,
and (v) calculated master values of a-reduced time'*. Where there is an initial
deviation, perhaps due to a preliminary reaction, or doubt about the warm-up period,
the reduced time method ((ii) above) may be modified by the use of two defined
reference points in the comparison of families of curves®® '

There is considerable variation in the literature concerning the range of o which
is accepted by different workers as sufficient evidence of obedience to a particular rate
expression (f(2) = k?) using method (i) above. Carter!? regards it as important that
conformity should be maintained until very close to @ = 1.0, whereas other workers
have found evidence of changes in mechanism, and, therefore, in kinetic characteris-
tics, earlier in the reaction.

The decision as to which of the available kinetic expressions provides the most
acceptable fit to a given set of isothermal (x;, #;) measurements requires consideration
of: (i) the x-time ranges within which the expressions themselves are most readily
distinguished, and (ii) the experimental accuracy with which magnitudes of « must be
determined to enable such distinctions to be made with certainty. A comprehensive
treatment of all aspects of these problems is clearly beyond the scope of a single
article and we have selected, as being of greatest general interest, the following
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approach. Calculated x-time values for expressions in Table 1 (the gencrating equa-
tion) were analyzed by rate equations of similar form (the analyzing equation). These
trial analyses were examined for linearity according to method (i) above, over selected
ranges of the dependent variable, «. The influence of various levels of random error
introduced into & was also considered. The results of these comparisons are presented
below, following a discussion of the criteria which can be used to represent deviations
of data from exact obedience to the analyzing expression.

Criteria for expressing deviation of data points from a theoretical line

7 Various standard statistical criteria may be used to provide a measurement of
the aggregate deviation of a set of measured points from the calculated (least-squares)
~ line through them. Parameters most usually quoted are the correlation coefficient, r;
the standard error of the slope of the regression line, s,; and the standard error of the
estimate of y from x, s, (also known as the standard error of the regression). Davis
and Pryor'” have pointed out the inadequacies of r and the advantages of using s,
in that it incorporates the desirable qualities of s, and is also dependent upon the
range of the independent variable, x, used in the analysis.

The use of a single parameter to express the deviation of data from a line does
not, however, reveal the existence of systematic variations of experiméntal or generated
points from the analyzing expression. The magnitudes and directions of such deviations
are, however, of great practical importance in identifying the kinetic expression which
gives the best fit to the observations. The appropriate information is given in plots of
residuals'® (i.e., the differences between what is actually observed and what is
predicted by the regression cquation) against cither variable (i.e., dependent or
independent), and this approach is used in the comparisons below. By the use of
calculated data for analysis (representing an exact obedience to a given expression
and incorporating a controlled level of inaccuracy) it is possible to determine the level
of accuracy which must be achieved in experimental work to make a positive identifi-
cation of obedience to a particular expression in preference to the others considered.

Relatively few experimental studies have reported statistical parameters
applicable to the kinetic analyses. Examination of residuals has been used by Leiga!®
to distinguish between conformity to the power and to the exponential faws during the
acceleratory period of silver oxalate decomposition, and by Johnson and Gallagher!?®
in the kinetic analysis of the decomposition of freeze-dried iron(III) sulphate. Green2®
has considered, in general terms, the testing of hypotheses in kinetic analyses. For two
proposed models the ratio F = (s,,)3/(5.,) i5 used as the criterion in the standard
F-test. Hypothesis 2 (i.e., the fit of data by model 2) is rejected in favour of model 1 if
F is larger than the appropriate critical value, at the chosen level of significance,
obtained from F tables. Wagner et al.>! have dealt with the optimization of kmetm
parameters once a particular model has bcen assumed.

Experimental errors _
The sources, nature and magnitudes of random and systematic errors in experi-
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mentally determined values of o, ¢ and 7 for solid-phase decomposition reactions have
not been the subject of detailed discussion in the literature. The magnitudes and
properties of such inaccuracies are, however, important factors in the reliability of
conclusions obtained in kinetic analyses.

Random errors in time measurement are probably sufficiently small to be
neglected in most reaction rate studies. An important systematic error arises from the
induction period or the time required to heat the reactant to the temperature of the
reaction vessel, and this can be difficult to measure realistically. However, in plots of
f(a) against time the delay appears as a change of intercept on the time axis and does
not influence the shape of the curve or the magnitude of k. Induction periods are,
however, an important problem in reduced-time methods of analysis.

Benson?? has given a general discussion of the precision of analysis, the

reaction interval to be included and the temperature control required to achieve
stated limits of accuracy of measurements of rate coefficients, %, and of activation
energies, E. He concludes that 7" must be known to 4- 0.03 % (or -- 0.2 K at 600 K)
to limit the error in &k to -+ 1%, He notes that control better than -- 1 K is difficult
above 600 K, with consequent errors of 4- 5% in &k and about + 10% in E. In studies
of solid-state reactions it must also be remembered that the problems of temperature
control extend beyond the achievement of satisfactory control of the reactant environ-
ment, in that self-heating (or self-cooling)} may occur, particularly in rapidly de-
composing samples of large mass. Temperature inhomogeneities are increased
further by changing thermal conductivity characteristics during chemical change and
gas evolution.
‘ Thus, providing adequate temperature control can be achieved, errors in « will
be of greatest significance in obscuring the fit of this parameter to theoretical kinetic
expressions. Systematic errors in & may arise (inter alia) from the following sources.
(i) Inaccuracy in determination of the value of the measured parameter (e.g., reactant
mass, gas pressure, etc.) corresponding to completion of the reaction under investi-
gation and to which all other values are related in «. (ii) A leak or other source of
release of gas into the system. (iti) Adsorption of gaseous product onto a solid product
or the reaction vessel walls, etc. (iv) An initial reaction or desorption of adsorbed
gases on heating the reactant before the onset of the process being investigated.
Independent measurement of these contributions to the overall observations can
sometimes be incorporated in the kinetic analysis.

The present study is restricted to investigation of the influence of random
errors, computer generated and evenly distributed up to a selected maximum percent-
age of each o value. (Although not included in the present account, a number of other
error distributions can be envisaged and could be incorporated in a similar analysis.
These include error within a constant range (representing, for example, the inaccuracy
with which a mass measurement may be made in a thermogravimetric study) or
dependent upon a squared term (as could arise from pressure measurements using a
McLeod gauge).) The present study reports comparison of generated values of o
(containing various selected maximum levels of percentage error in «) with appropriate
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analyzing expressions. Since it is known that each set of data is being compared with a
“wrong” analyzing equation, the statistical parameters so obtained are just above the
upper limit for distinguishing between model expressions at the given error level. Thus
these conclusions can be used to provide a statistical basis for the estimation of the
error levels in experimental results which can be accepted as demonstrating an
acceptable fit to the analyzing equation. Comparisons of the type described will
" determine whether a decision on the fit of data to the model can be made. An even
more quantitative approach could include the use of standard statistical F-tests as
described by Green?°. '

 Generation of a—time data

For the purpose of calculation, values of the rate coeflicient were arbitrarily
chosen to give « = 0.98 at £ = 100. a—time curves drawn on this basis for the sigmoid
and deceleratory groups of equations in Table 1 are given in Fig. 1(a) and (b),
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Fig. 1. a—time curves for selected kinetic models (see Table 1): (a) sigmoid group; (b) deceleratory
group.
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respectively. Due to the influence of the exponent, n, values of rate coefficients, k',
obtained by least-square fit of the analyzing equation to the gencrated a—time data are
closer to the value calculated for the analyzing model than the original value of k in
the generating equation. Accordingly, before comparing the standard errors of the two
slopes (k and k'), calculated values of s, have been converted to percentages of the
slopes, b, i.e. %5, = 100 s,/b.

RESULTS AND DISCUSSION

From the many possible combinations of kinetic expressions for which statistical
investigations of distinguishability could be made, the following were selected for
consideration here as being of the greatest practical interest. _

(a) The sigmoid group (A2, A3, A4 and Bl). When errors are introduced and
re-analysis includes consideration of the generating expression, there are sixteen
possible combinations.

TABLE 2

DEVIATION TYPES OVER ¢ RANGE 0.05-0.95

(Represented by letters, see text: positive deviations to the right; low & values at tops of letters)

Generatinglanalyzing Deviation Generatingfanalyzing Deviation
expressions iype expressions ype
Stigmoid group - Deceleratary grotp (contd,)
A2/A3 D R3/F1 b

7 AZ[A4 D R3/R2 d
A2/Bi1 D

Deceleratory regions of sigmoid group

A3[A2 a A2[F]1 a
A3fA4 D A2fR2 b
A3/BY ¢ A2/R3 $
Ad/A2 a A3/F1 a
A4/A3 a A3/R2 b
A4/B1 3 A3/R3 g
BI/A2 a A4jF1 a
B1/A3 3 A4/R2 5
Bl/A4 3 A4fR3 a
Deceleratary group BI1/F1 D
Fi/R2 d BI/R2 b
Fi/R3 d BI/R3 b
R2/F1 D
R2/R3 b
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TABLE 3
CLASSIFICATION OF GENERATING[ ANALYZING EXPRESSION COMBINATIONS ACCORDING TO DEVIA'!’ION TYPE

(see also Table 2)

D a : A 4 B D
Sigmoid group
A2/A3 A3/A2 B1/A3 A3/BI
A2/A4 "Ad/A2 B1/A4 A4/B1
A2/B1 Ad4/A3
A3/A4 Bi1/A2
Deceleratory group ) .
R2/F1 R2/R3 F1/R2
' R3/F1 F1/R3
R3/R2
Decelerarory regions of sigmoid group
BI1/F1 . A2/F1 A2/R3 A2/R2
A3/F1 A3/R3 A3/R2
A4/F1 A4{R2 B1/R2
A4/R3 B1/R3

(b) The deceleratory group (F1, R2 and R3). These give a further nine combi-
nations.

(c) The deceleratory regions of the sigmoid group. The analysis of the deceler-
atory regions of the sigmoid group (A2, A3, A4 and B1) by the deceleratory models
(FI1, R2 and R3) gives a further twelve combinations.

The technique ilfustrated here through application to these selected important
equations may be extended readily to other kinetic expressions, other ranges of « and
other types of error in «.

' Results of these analyses are presented, in the most compact format that is
compatible with clarity, in Tables 2-8. These refer to comparisons in two o ranges
(0.05 < & < 0.95 and 0.20 < « < 0.80), other possibilities obviously exist. The
influence of inaccuracy of data is reported for three (pseudo) random error levels
(1,5 and 10 7 maximum of &) to-indicate trends and permit interpolation (again, many
other possibilities exist). Statistical parameters obtained by re-application of the
generating equation after inclusion of random errors in « values are subscripted zcro.
The tables report only the parameters which refer to that alternative expression which
is most accurately obeyed. The ratios of parameters for both analyzing and generating
expressions give a direct indication (ratio <1) of which is statistically the more

~acceptable. Where there is little to choose between two alternative analyzing expres-
sions, or there is a change in the closest analyzing expression as the error is increased,
values for both expressions have been tabulated.
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SIGMOID GROUP

a Range: 0.05-0.95
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S, y.‘:/ (Syz) L]

Basic Closest Statistical ~ Random error level (max % of o)} Deviation
expression  analyzing  parameter : rype
' expression o 1 5 10
A2 — (%%snlo 0 0.0939 0.515 1.19
ra 1 1 0.9998 0.9988
(sy=)o 0 0.00162 0.00913  0.0220
A3 % st 2.17 2.11 182 147
r 0.9960 0.9963 _ 0.9972 0.9982 D
Syx 0.0262 0.0255 0.0226 0.0187
suf{sn)o o0 22.5 3.53 1.24
syz{(syz)o O 15.7 2.48 0.85
A3 -—_ (% sn)o 0 0.0784 0.429 0.988
ro 1 1 0.9998 0.9992
(syz)o 0 095 x 10-3  0.0053  0.0126
Ad %osn 1.14 1.08 0.850 0.683
r 0.9989 0.9990 0.9994 0.9996 D
Syz 0.0108 0.0102 0.0082 0.0068
sv/(st)o (e o] 13.8 198 069
Syzf(Syz)o e o] 10.7 1.55 0.54
Ad — (%sb)o 0 0.0708 0.387 0.888
ro 1 1 0.9999 0.9993
(syz)o 0 0.67 x 103 0.0037 0.0088
A3 %%Su 1.14 1.20 1.51 2.01
F 0.9989 0.9988 0.9981 0.9966 a
Syx 0.0138 0.0146 0.0186 0.0256
spf(su)o o0 169 3.90 2.26
Syz/(Suzo o0 21.8 5.02 291
Bl — (%%sv)o 0 0.113 0.619 1.44
ro 1 1 0.9997 0.9982
(sv)o 0 0.0071 0.0401  0.0967
A4 " 9%sn 1.28 1.23 1.00 0.790
r 0.9986 0.9987 0.9991 0.9995 3
Syz 0.0121 00116 0.0097 0.0078
suf(sb)o o0 10.9 1.62 0.55
o0 1.63 0.24 0.08
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TABLE 5

SIGMOID GROUP
« Range: 0.20-0.80

Basic Closest Statistical  Randorn error level (max %, of «) Deviation
expression  analyzing  parameter - type
expression 0 ) 5 10
AZ — (%6 su)e 0 0.0280 0.143 . 0.293
ro 1 1 1 1
(Syz)o 0 0.21 x 103 0.00i1 0.0023
A3l St 1.38 1.35 1.25 1.13
r 0.9550 0.9590 0.9991 0.9993 D
Syz 0.0072 0.0071 0.0067 0.0061
suf(s1)o 0 482 8.74 3.86
Syz{(Syz)o e} 33.8 6.09 2.65
A3 — (%sp)0 0 0.0250 0.128 0.262
ro 1 i 1 1
(suz)o 0 0.13 x 1073 0.68 x 10° 0.0014
Bi %Sn 0470 0.460 0.446 0.494
r 0.9999 0.9999 0.9999 0.9999 2
Syx 0.0120 0.0118 0.0115 0.0130
Sp/(Sv)o - o o] 18.4 3.48 1.89
Syz/(Syz)o (s o] 90.8 16.9 9.29
A4 — (% sv)o 0 0.0235 0.120 0.246
ro 1 1 1 i
(syz)o 0 0.96 x 10~% 0,50 x 109 0.0010
B1 5b 0.566 0.597 0.729 0.9006
r 0.9998 0.9998 0.9997 0.9995 P
Syz 0.0144 0.0153 0.0189 0.0238
su/(su)o - oD 254 6.08 3.68
SF:I(SUI)O (e8] 159 . 37-8 R 23-8
BI —_ (%sn)o 0 0.0344 0.176 0.360
: ro 1 1 1 0.9999
(sy)o 0 0.88 x 103 0.0045 0.0095
A3 9. sn 0.470 0.479 0.523 0.603
r 0.999% 0.9999 0.99%8 0.9998 3
Syz 0.0025 0.0025 0.0028 0.0033
sb/(sn)o o o 139 297 1.68
Syz{(5yz)o Q 2.84 0.62 0.35
Ad O sn 0.566 0.545 0.461 0.359
r 0.9993 09998 0.9999 0.9959
Syr 10.0023 0.0022 0.0019 0.0015 5
su/(sp)o (s} 15.8 2.62 1.00
.s,,zl (su2)o a0 2.50 0.42 0.16 -




TABLE 6

DECELERATORY GRQUP

« Range: 0.05-0.95
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Basic Closest Staristical  Random error level (max % of &) Deviation
expression analyzing parameter type
expression 0 1 3 i0
Fl1 —_ (%sn)a 0 0.138 0.761 1.77
ro 1 1 0.9995 0.9973
(syx)o 0 0.0046 0.0270 0.0680
R3 %D 343 3.35 3.03 2.55
r 0.9902 0.9906 0.9923 0.9945 a
Syz 0.0249 0.0245 0.0229 0.0201 :
su/(su)o o0 24.3 3.98 1.44
Syz/(Syz)o OO 5.33 0.85 0.30
R2 — (%%svle 0 0.0474 0.255 = 0571
ro 1 1 0.9999 0.9997
(syz)o 0 044 x 1673 0.0024 0.0055
R3 %% 5u 1.57 1.64 1.95 243
r 0.9979 0.9977 0.9968 0.9950 D
Syz 0.0115 0.0121 0.0148 0.0192
sbf(su)o o] 34.6 7.65 4.26
S yzf (s yx) i} ao 27.5 6.17 3.49
R3 — (%Sv)o 0 0.0727 0.395 0.898
ro 1 1 0.9999% 0.9993
(5uz)o 0 0.54 x 16-3 0.0030 0.0071
‘R2 O%Sb 1.57 1.52 1.32 1.03
r 0.9979 0.9580 0.9985 0.9991 a
Syx 0.0144 0.0140 0.0124 0.0100
Ssv/(sv)o Qo 20.% 3.34 1.15
Syz/(syz)o (v} 25.9 4.13 141
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TABLE 7

DECELERATORY GROUP

« Range: 0.20-0.80

C. Ios.esr

Basic Statistical Random ervor level (max %, of a) Devr'atfarz
expression Analyzing pararmeter type
expression a0 I 5 i0
F1 — . (%su)e 0 0.0366 0.187 0.383
ro 1 1 1 0.9999
(suz)o 0 048 x 10-3 0.0025 0.0053
R3 %Sb 1.96 1.94 1.84 1.72
r 0.9979 0.9979 0.9981 0.9934 a
Syz 0.0063 0.0063 0.0061 0.0058
. 5u/(sp)o oG 53.0 9.584 4.49
Syxl(sﬂz)o e 8] 13-1 2-44 1-09
R2 —_ ~ (Y%Sv)a 0 0.0168 0.0858 0.176
ro 1 1 1 1
(syz)o 0 0.72 x 104 0.37 x 103 0.78 x 103
R3 %5p 0.961 0.984 1.08 120
r 0.9995 0.9995 0.9994 0.9992 D
Syz 0.0031 0.0032 0.0036 0.0041
spf(sv)o - ©O 58.6 12.6 6.82
Syz/(Sy:)D o0 44.4 9-73 5-26
R3 —_ (% 5v)o 0 0.0232 0.118 0.242
' ro 1 1 i 1
(syz)o 0 0.76 »x 104 0.39 x 103 0.82 x 103
R2 %S 0.961 - 0.944 0.875 0.786
r 0.9995 0.9995 0.9990 0.9997 a
Syz 0.0041 0.0040 0.0038 0.0035
sv/(50)0 0 40.7 7.42 3.25
Syz/(Syz)o CO 52.6 9.74 4.27
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TABLE 38

DECELERATORY REGION OF SIGMOID GROUP

Basic Closesr Srtatistical  Random error level (max % of «) Devigtion
expression analyzing  pararmeler - type
expression a 1 3 10
A2 R3 %% Sb 0.549 0.495 0.584 1.61
043 < a < 0.97) r 0.9997 0.99938 0.9997 0.9977 5
Syx . 0.0041 -~ 0.0038 0.0047 0.0141
R2 % sn 178 . 1.70 1.34 0.666
r (0.9972 (.9974 0.9984 0.9996 b
Syz 0.0170 0.0164 0.0134 0.0070
A3 , R3 %56 0.699 0.771 1.29 2.64
0.5 < & < 0.97) r 0.9997 0.9996 0.9988 0.99351 5
Syx 0.0046 0.0051 0.0091 0.0204
R2 %% sn 1.31 1.2i 0.776 0.289
r 0.9988 0.5990 -§ 0.99%96 0.9959 b
Syz 0.0108 0.0101 0.0067 0.0027
Ad R3 %650 1.01 1.11 1.71 3.16
(0.58 < x < 0.97) r 0.9993 0.9992 0.9981 0.9936 a
: Sy 0.0064 0.0071 0.0117 0.0237
R2 %%6Sb 1.01 - J 0.520 0.507 0.664
r 0.9993 0.9995 0.9998 09997 s
Syx 0.0081 0.0074 0.0043 0.0060
Bl . R3 %St 1.49 1.42 - 113 0.706
0.52 < o < 0.97) r 0.9984 0.9986 0.9991 0.9957 b

Syx 0.0098 0.0095  0.0077 0.0050

The following general conclusions emerge from these results.

(i) There is little to choose between /s, and s,, as indicators of the excellence-
of-fit. (The parameters s, and s,,, applied over the same « and x range, would give
equivalent results). ’ ,

(i) The introduction of small (up to 19%,) random errors in z resuits in marked
increases in the magnitudes of /s, and of s,,, but this rate of increase becomes less -
pronounced as the maximum error levels rise further.

.(ii1) The correlation coefficient, r, is a most insensitive indicator of the appli-
-cability of a rate expression. Values are reported here only because correlation
coefficients are so commonly reported and the high values obtained here, using an
““incorrect™ expression, emphasize the caution that is necessary in interpreting r-values
found.. :
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‘More specific conclusions are discussed in the context of individual groups of -
expressions below.

Plots of the residuals, f'{(¢) — f(x), against o for the various generating and most
acceptable analyzing expressions are given in Figs. 2-4. Curve shapes of plots for
sigmoid (Fig. 2) and deceleratory (Fig. 3) expressions for the larger (0.05 < « < 0.95)
and smaller (0.20 < « < 0.80) ranges are similar, though the magnitudes of deviation
were reduced over the smaller « range. Introduction of random errors results in a
random scatter of points on these plots. For convenience of reference in the text,
systematic deviations of the type shown in Figs. 2-4 may be schematically represented
by the letters D, (0, $,2, b, d, p and g. The vertical stroke represents zero deviation,
e increasing dowawards, and positive deviations occurring to the right. Thus, D

DEV{ATIDNS X 10
+1

" Q05¢< or.<0 .95 o,zococ <0.80
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Fig. 2. Residual curves for the sigmoid group of kinetic expressions. Deviations are the differences
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represents 2 maximum positive deviation in the middle of the « range, while p and b
also represent positive deviations, but the maximum occurs at low and high values of
o, respectively. The distinction between these qualitative representations is necessarily
somewhat arbitrary.

The trends revealed by examination of similar residual plots of the calculated
deviations of experimental points from the regression line for a proposed model,
against «, could be used, together with Tables 2 and 3 as indications of: (i) alternative
rate equations with which the data should be compared and (ii) the « ranges over which
the distinguishability is greatest.

The sigmoid group (A2, A3, A4 and Bl) (Tables 4 and 5, Fig. 2)
The following conclusions are derived from the data in Tables 4 and 5 and
plots of residuals (of which only examples of closest agreement are recorded in Fig. 2).
(@) The range 0.05 < o < 0.95. A3 and A4 are most difficult to distinguish
from each other and it is especially likely that A4 may appear to fit when A3 should
apply. Deviations are at a maximum in the mid-o range (i.c. type D). There are also
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difficulties in distinguishing between the applicability of Bl and A4, even at 19
maximum error levels. Here %s, emerges as the most reliable statistical parameter.
Obedience to A2 could be confused with obedience to A3. The similarity, however,
becomes critical only at an error Ievel between 5— 10 % o, which can usually be bettered
experimentally.

(b) The range 0.20 < a < 0.80. Here it is found that, compared with the wider
« range, A3 and A4 are more difficult to distinguish from Bl than each other and Sey
is found to be the most useful statistical parameter for this purpose. Bl is most likely
to be indistinguishable from A3 at low error levels (up to 12{) and with A4 at
higher error levels (> 1%) and %s, is the most reliable parameter. A3 is more
readily distinguished from the A2 expression.

The deceleratory group (F1, R2 and R3) (Tables 6 and 7, Fig. 3).

Over both « ranges, the equations F1 and R2 are most likely to be incorrectly
identified as R3, while R3 itself is most closely comparable with R2. Both R2 and R3
are relatively readily distinguishable from F1. In the absence of error, greater distin-

_guishability is obtained over the wider « range, but as the error level is increased the
reduced « inferval provides the greater discrimination. Since deviations are of the
type D and d, distinguishability is greatest in the mid-x range.

The deceleratory regrons of the sigmoid curves (Table 8, Fig. 4)

Kinetic analyses of sigmoid curves have often proceeded in two stages in which
data for the acceleratory stage is tested for obedience to the power or exponential
laws (PI or El) and the deceleratory stage is analyzed according to the geometric or
reaction-order expressions (R2, R3 or (usually) F1). The points of inflection, «,,, at
which the rate is a maximum, for the sigmoid curves are®: A2 (0.39); A3 (0.49);
A4 (0.53) and B1 (0.50). For the purpose of the present comparisons, the deceleratory
regtons of these curves were rescaled with f = (o — o )/(1 — &), (i.e. p = 0 at
« = o, and f = 1 when o = 1) representing the fraction of the deceleratory de-
composition complete, and the origin of the axes relocated with the point (0,0) at
(o = o, t = 1,). The rate coefficient in the generating expression was selected to give
o = 0.98 when ¢ = ¢, -+ 100. With B1, for which &, = 0.50, ., was arbitrarily set at
100 and k" chosen as half the value used in earlier analyses.

From comparison of the data it is found that F1 is the least accurate representa—
tion of the deceleratory periods of the sigmoid expressions (A2, A3, A4 and B1). R3
gives the most acceptable fit, particularly to Bl, but also to the deceleratory periods
of A2, A3 and A4 at low error levels. The similarity between R3 and Bl increases as
the error level is increased, but with A2, A3 and A4, R2 emerges as the more satis-
factory representation as the error level rises. The change from R3 to R2 as the
closest analyzing expressron occurs, 4as the error level rises, in the sequence A4, A3
and finally A2.

Use of rate coefficients in activation energy determinations
The rate coefficients, k, for each of the generating expressions were doubled and
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the effect on the apparent rate coefficient, £’, obtained by a least-squares analysis
using a closely related analyzing expression, was determined. In all such comparisons,
the apparent rate coefficients, k', were within 19/ of twice their original values. This
provides strong support for a conclusion reported by (inter alia) Johnson and
Gallagher?® and Yankwich and Zavitsanos?3 that the calculated magnitude of the
activation energy for a reaction is not sensitive to the particular rate equation used in
the kinetic analysis.

CONCLUSIONS

The theoretical analyses and kinetic comparisons given above provide quanti-
tative information concerning the magnitudes of the differences in those «—time
kinetic expressions which have found most general use in studies of rates of solid-state
decompositions. These results can be applied in the testing of experimental data, by
indicating the equations between which distinctions are most difficult, the « ranges
within which differences are greatest, and the levels of accuracy of data required, to

. enable reliable distinctions to be made. It is concluded from a critical consideration of
these model calculations that a single statistical parameter is not usually capable of
providing the evidence upon which a particular kinetic obedience can be positively
demonstrated. The shapes of plots of residuals give more systematic information and
such comparisons of experimental results with theoretical relations through Figs. 24
and Tables 2 and 3 may be used to decide which alternative kinetic equations should
be tested and the ranges of « within which the distinguishability is greatest.

. The present communication has been concerned with those kinetic equations
which have found greatest application in studies of the decompositions of solids,
considered in two « ranges and at three levels of error, of one type, in «. Clearly the
approach is capable of extension in a variety of directions; to additional equations,
ranges of a and experimental inaccuracies. A comprehensive examination of all
systems of interest is not practicable.

It may also be necessary to consider other influences such as the distribution of
crystal sizes in the reactant, changes in mechanism during the course of reaction, etc.
Finally, it should be emphasized that it is also necessary to support the mechanistic
interpretation of a kinetic observation (however accurate) with other relevant
measurements. Microscopic examination is particularly valuable in this respect.
Kinetic characteristics may change during a rate process of interest (e.g. cessation of
nucleation on complete reaction of surfaces of particles, sintering of product, strain-
induced disintegration or reactant crystals, etc.), and obedience to a particular rate
cquation may be consistent with more than a single nucleation and growth model.
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